COMPSCI 389
Introduction to Machine Learning

Evaluation Part 4

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Model Evaluation (Review)

* Often ML texts evaluate models by doing the following:
* Partition the data into train/test.
* Train the model on the training data.
* Evaluate the model on the testing data.

* Report a performance metric and a number representing the uncertainty
in this performance metric.

* Format: performance tuncertainty

Model MSE RMSE MAE
0 k-NN k=1 sigma=None 1.104 + 0.075 1.051 £ 0.029 0.803 + 0.029
T k-NN k=100 sigma=None 0.565 + 0.041 0.752 + 0.020 0.586 + 0.020
2 k-NN k=110 sigma=90 0.565 + 0.041 0.752 £+ 0.020 0.586 + 0.020

Algorithm Evaluation

* Recall that the previous method evaluates the performance of a
single model (learned with each algorithm).

* To evaluate algorithms, we must evaluate them with different
training sets.

Algorithm Evaluation (ldeal)

In practice, we can’tdo
Specify a number of trials, num_trials this step!
Foreach trial 2 in 1, ..., num_ trials do: /
o Sample a data set (ideally independent of the data sets for other trials)
o Split the data set into training and testing sets
o Use the ML algorithm to train a model on the training set.

o Use the trained model to make predictions for the testing set.
o Compute the sample performance metric (e.g., sample MSE) for the test set. Call this Z;.

Compute and report the average sample MSE.
Compute and report the standard error of Z1, ..., Znum trials-

Cross-Validation

* ldea: Repeatedly define different parts of the data set to be training and
testing data.
* Different training sets result in different models.
* The testing set for each model will always be independent of the data used to

train the model.
* To do this, we will split the data D into k equally-sized subsets.
* Each of these subsets is called a fold.
* This k is not related to the k in nearest neighbor.

* We will train on all but one fold and test on the held-out fold.
* These individual evaluations on test sets containing one fold have high variance!

* We can average these high-variance evaluations to obtain a better estimate of
performance.

Entire Data Set

|

k folds

Entire Data Set

Test Train
\ \
(\ [| Performance
Prediction

_,p1

\ J

|
k folds

_,p2
_,p3

7
Repeat for Py, ..., P, Performance Estimate = mean(Py, ..., Py) Uncertainty quantification = SE(P;, ..., Py)

K-Fold Cross-Validation Pseudocode

¢ Input: Dataset D, Number of folds k, Machine Learning Algorithm ML_Algo
e Output: Cross-validated performance estimate

Procedure:

1. Split D into k equal-sized subsets (folds) F1, F2,
2.For i from 1 to k:

o Set aside fold Fi as the validation set, and combine the remaining k-1 folds to form a training
set.

o Train the model M using ML_Algo on the k-1 training folds.

o Evaluate the performance of model M on the validation fold Fi. Store the performance metric
P i.

.., Fk.

3. Calculate the average of the performance metrics: Average_Performance = mean(P_1, P_2,
P k).
4. Optionally, calculate other statistics (like standard deviation or standard error) of the performance

metrics across the folds. 8

Leave-One-Out (LOO) Cross-Validation

* The number of folds equals the number of points in the data set.
* Each test set contains only a single point!

* Provides the best estimates of performance.

* Often too computationally intensive to perform.

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

Choose number of folds for k-fold Cross-Validation
k = 20
kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)

KFold(n_splits=20, random_state=1, shuffle=True)

10

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

Choose number of folds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)
for train_index, test index in kf.split(X):
‘ print("TRAIN:", train_index, "TEST:", test index)

11

KFold(n_splits=20, random_state=1, shuffle=True)

TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [
TRAIN: [

TRAIN: [

. 43300

. 43300

. 43300

. 43300

. 43300

. 43300

. 43300

. 43300

. 43300

. 43300

43301

43301

43301

43301

43301

43301

43301

43301

43301

43301

43302]
43302]
43302]
43302]
43302]
43302]
43302]
43302]
43302]

43302]

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

10

40

11

21

26

29

44

93

23

19

33

22

36

46

35

13

45 .

134 .

34 ...

25 ...

58 ...

24

55 ...

62 ...

43 .

31 ...

. 43267

. 43246

43262

43277

43255

. 43271

43241

43223

. 43229

43274

43290

43256

43286

43293

43282

43284

43249

43231

43234

43278
T2

43296]
43261]
43288]
43299]
43292]
43298]
43275]
43265]
43242]

43281]

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

Choose number of folds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)
for train_index, test index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test index)

mse _score = mse for fold(train_index, test index, model, X, y)
print("MSE Score for this fold:", mse score)

13

Function to compute MSE for each fold

def mse for fold(train_index, test index, model, X, y):
X _train, X test = X.iloc[train index], X.iloc[test index]
y train, y test = y.iloc[train_index], y.iloc[test index]
model.fit(X train, y train)
predictions = model.predict(X test)
return mean_squared error(y_test, predictions)

Choose number of fotds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k} shuffle=True, random state=1)

display(kf)
for train_index, test| index in kf.split(X):

print("TRAIN:", train_indexJ "TEST:", test index)

mse score = mse for fold(train_index, test index, model, X, y)
print("MSE Score for this fold:", mse score)

14

KFold(n_splits=20, random_state=1, shuffle=True)

TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score
TRAIN: [
MSE Score

0
for
o
for
0
for
0
for
0
for
0
for
0
for
0
for
o
for
1
for

1

2 ...

43300 43301 43302]

this fold: ©.5807234989808185

1

this fold:

1

this fold:

1

this fold:

1

this fold:

1

this fold:

1

this fold:

1

this fold:

1

this fold:

2

this fold:

2 ...
.5630048290694765

43300 43301 43302]

. 43300 43301 43302]

.5553467010840363

. 43300 43301 43302]

.6129428000450592

. 43300 43301 43302]

.5933726084007112

. 43300 43301 43302]

.5644141827789226

. 43300 43301 43302]

.573666751853279

. 43300 43301 43302]

.5764896819599702

. 43300 43301 43302]

.5443248559898528

. 43300 43301 43302]

.5647024320496056

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

TEST:

10

40

11

21

26

29

44

93

23

19

33

22

36

46

35

13

45 .

134 .

34 ...

25 ...

58 ...

24

55 ...

62 ...

43 .

31 ...

. 43267

. 43246

43262

43277

43255

. 43271

43241

43223

. 43229

43274

43290 43296]
43256 43261]
43286 43288]
43293 43299]
43282 43292]
43284 43298]
43249 43275]
43231 43265]
43234 43242]

4327%543281]

k-Fold Cross-Validation for Weighted k-
Nearest Neighbor (k = 300,00 = 100)

* Average the mse_score values from each fold (code not shown).
* Compute the standard error (code not shown).

Average MSE: 0.571
MSE Standard Error: +0.004

* Notice that this is fundamentally different from what we evaluated
before.

* Model evaluation: Use one train-test split, report the performance and
uncertainty on the test set.

» Algorithm evaluation: Use k-fold cross-validation to estimate the
performance (and report the uncertainty) if an algorithm were to be
applied to a new data set of a given size.

16

Serating

Thank you.

Degginmenic

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Model Evaluation (Review)
	Slide 3: Algorithm Evaluation
	Slide 4: Algorithm Evaluation (Ideal)
	Slide 5: Cross-Validation
	Slide 6
	Slide 7
	Slide 8: K-Fold Cross-Validation Pseudocode
	Slide 9: Leave-One-Out (LOO) Cross-Validation
	Slide 10: k-Fold Cross-Validation Implementation
	Slide 11: k-Fold Cross-Validation Implementation
	Slide 12
	Slide 13: k-Fold Cross-Validation Implementation
	Slide 14
	Slide 15
	Slide 16: k-Fold Cross-Validation for Weighted k-Nearest Neighbor (k equals 300,sigma equals 100)
	Slide 17: End

