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Model Evaluation (Review)

* Often ML texts evaluate models by doing the following:
* Partition the data into train/test.
* Train the model on the training data.
* Evaluate the model on the testing data.

* Report a performance metric and a number representing the uncertainty
in this performance metric.

* Format: performance tuncertainty

Model MSE RMSE MAE
0 k-NN k=1 sigma=None  1.104 + 0.075 1.051 £ 0.029 0.803 + 0.029
T k-NN k=100 sigma=None 0.565 + 0.041 0.752 + 0.020 0.586 + 0.020
2 k-NN k=110 sigma=90 0.565 + 0.041 0.752 £+ 0.020 0.586 + 0.020



Algorithm Evaluation

* Recall that the previous method evaluates the performance of a
single model (learned with each algorithm).

* To evaluate algorithms, we must evaluate them with different
training sets.



Algorithm Evaluation (ldeal)

In practice, we can’tdo
Specify a number of trials, num_trials this step!
Foreach trial 2 in 1, ..., num_ trials do: /
o Sample a data set (ideally independent of the data sets for other trials)
o Split the data set into training and testing sets
o Use the ML algorithm to train a model on the training set.

o Use the trained model to make predictions for the testing set.
o Compute the sample performance metric (e.g., sample MSE) for the test set. Call this Z;.

Compute and report the average sample MSE.
Compute and report the standard error of Z1, ..., Znum trials-



Cross-Validation

* ldea: Repeatedly define different parts of the data set to be training and
testing data.
* Different training sets result in different models.
* The testing set for each model will always be independent of the data used to

train the model.
* To do this, we will split the data D into k equally-sized subsets.
* Each of these subsets is called a fold.
* This k is not related to the k in nearest neighbor.

* We will train on all but one fold and test on the held-out fold.
* These individual evaluations on test sets containing one fold have high variance!

* We can average these high-variance evaluations to obtain a better estimate of
performance.
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Repeat for Py, ..., P, Performance Estimate = mean(Py, ..., Py) Uncertainty quantification = SE(P;, ..., Py)



K-Fold Cross-Validation Pseudocode

¢ Input: Dataset D, Number of folds k, Machine Learning Algorithm ML_Algo
e Output: Cross-validated performance estimate

Procedure:

1. Split D into k equal-sized subsets (folds) F1, F2,
2.For i from 1 to k:

o Set aside fold Fi as the validation set, and combine the remaining k-1 folds to form a training
set.

o Train the model M using ML_Algo on the k-1 training folds.

o Evaluate the performance of model M on the validation fold Fi. Store the performance metric
P i.

.., Fk.

3. Calculate the average of the performance metrics: Average_Performance = mean(P_1, P_2,
P k).
4. Optionally, calculate other statistics (like standard deviation or standard error) of the performance

metrics across the folds. 8



Leave-One-Out (LOO) Cross-Validation

* The number of folds equals the number of points in the data set.
* Each test set contains only a single point!

* Provides the best estimates of performance.

* Often too computationally intensive to perform.



k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

# Choose number of folds for k-fold Cross-Validation
k = 20
kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)

KFold(n_splits=20, random_state=1, shuffle=True)
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k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

# Choose number of folds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)
for train_index, test index in kf.split(X):
‘ print("TRAIN:", train_index, "TEST:", test index)
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KFold(n_splits=20, random_state=1, shuffle=True)
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k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

# Choose number of folds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k, shuffle=True, random state=1)

display(kf)
for train_index, test index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test index)

mse _score = mse for fold(train_index, test index, model, X, y)
print("MSE Score for this fold:", mse score)
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# Function to compute MSE for each fold

def mse for fold(train_index, test index, model, X, y):
X _train, X test = X.iloc[train index], X.iloc[test index]
y train, y test = y.iloc[train_index], y.iloc[test index]
model.fit(X train, y train)
predictions = model.predict(X test)
return mean_squared error(y_test, predictions)

# Choose number of fotds for k-fold Cross-Validation
k = 20

kf = KFold(n_splits=k} shuffle=True, random state=1)

display(kf)
for train_index, test| index in kf.split(X):

print("TRAIN:", train_indexJ "TEST:", test index)

mse score = mse for fold(train_index, test index, model, X, y)
print("MSE Score for this fold:", mse score)
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KFold(n_splits=20, random_state=1, shuffle=True)
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k-Fold Cross-Validation for Weighted k-
Nearest Neighbor (k = 300,00 = 100)

* Average the mse_score values from each fold (code not shown).
* Compute the standard error (code not shown).

Average MSE: 0.571
MSE Standard Error: +0.004

* Notice that this is fundamentally different from what we evaluated
before.

* Model evaluation: Use one train-test split, report the performance and
uncertainty on the test set.

» Algorithm evaluation: Use k-fold cross-validation to estimate the
performance (and report the uncertainty) if an algorithm were to be
applied to a new data set of a given size.

16



Serating

Thank you.

Degginmenic
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